A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture - Supplement

by

David Pierre Leibovitz

A supplement to the thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of

> Doctor of Philosophy in

Cognitive Science

Carleton University
Ottawa, Ontario
© 2013, David Pierre Leibovitz

A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture - Supplement

This is supplemental material for the eight cognitive models and forty two tests of a thesis named "A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture". This supplement contains detailed information about computational test subjects, stimuli, and results. The thesis contains extracts from the information contained herein. The models and tests are listed in the same order as in the thesis and with the same chapter/appendix identifiers.

For both computational subject and stimuli details, the appropriate parameter files are shown. These are fully described within the Emergic Simulation System portion of the thesis. The test results are available online in an animated format (Leibovitz, 2012a) that is ideal for exhibiting qualitative behaviour. It is an extremely compact format (one web page for each of the eight computational models), and has a few additional test results. It is available at
http://emergic.upwize.com/?page id=26
This supplement merely extracts the animated results into a frame-by-frame account with precise timing information suitable for quantitative analysis and print publication. The thesis contains extracts of these frame-by-frame accounts.

The animated results contain an extra Photoreceptor Changes column that is not ordinarily shown in the thesis or supplement as it is not yet part of our cognitive theory. It
demonstrates temporal edge detection and is merely the absolute difference in a photoreceptor's activation between two time ticks.

Some of these results have been previously introduced (Leibovitz, 2012b; Leibovitz \& West, 2012).

Table of Contents (Top-Level)

Table of Contents (Top-Level) iv
Table of Contents v
List of Tables xi
List of Illustrations xiv
2 Chapter: An emergic model of filling-in for colour homogeneity 1
3 Chapter: An emergic model of filling-out for trans-saccadic integration 42
4 Chapter: An emergic model of filling-in after brief stimuli 115
5 Chapter: An emergic model of filling-in the blind-spot 163
Appendix A: An emergic model of filling-in for anorthoscopic perception 260
Appendix B: An emergic model of filling-in the foveal blue scotoma 309
Appendix C: An emergic model of filling-in during blinks 376
Appendix D: An emergic model of filling-in from imagination 426
References 467

Table of Contents

Table of Contents (Top-Level) iv
Table of Contents v
List of Tables xi
List of Illustrations xiv
2 Chapter: An emergic model of filling-in for colour homogeneity 1
2.1 Subject details 1
2.1.1 Test $1,2 \& 4$ subject 1
2.1.2 Test 3 subject 2
2.2 Stimuli details 3
2.2.1 Test 1a stimulus (Red) 3
2.2.2 Test 1b stimulus (Green) 3
2.2.3 Test 1c, 2 \& 3 stimulus (Blue) 3
2.2.4 Test 4 stimulus. 4
$2.3 \quad$ Result details 5
2.3.1 Test 1a results: Visual time sequence of homogeneous red filling-in 6
2.3.2 Test 1 b results: Visual time sequence of homogeneous green filling-in 12
2.3.3 Test 1c results: Visual time sequence of homogeneous blue filling-in 18
2.3.4 Test 2 results: Visual time sequence of homogeneous blue filling-in under eye motion 24
2.3.5 Test 3 results: Visual time sequence of homogeneous blue filling-in under large RFs 30
2.3.6 Test 4 results: Visual time sequence of texture not filling-in 36
3 Chapter: An emergic model of filling-out for trans-saccadic integration 42
3.1 Subject details. 42
3.1.1 Test $1,2 \& 5$ subject 43
3.1.2 Test 3 subject 44
3.1.3 Test 4 subject 45
3.2 Stimuli details 46
3.2.1 Test 1 stimulus: Simple surfaces (Love) 46
3.2.2 Test 2 stimulus: Natural image (Lena) 47
3.2.3 Test 3 stimulus: Dynamic image with surface gradients (Chaser) 48
3.2.4 Test 4 stimulus: Edge under varying RF sizes 49
3.2.5 Test 5 stimulus: Image masking under fast motion 49
3.3 Result details 50
3.3.1 Test 1 results: Simple surfaces (Love) 51
3.3.2 Test 2 results: Natural image (Lena) 62
3.3.3 Test 3 results: Dynamic image with surface gradients (Chaser) 73
3.3.4 Test 4 results: Edge under varying RF sizes 84
3.3.5 Test 5 results: Image masking under fast motion 95
3.3.6 Test 6 results: Drawing figures under planned eye movements under paralysis. 104
4 Chapter: An emergic model of filling-in after brief stimuli 115
$4.1 \quad$ Subject details. 115
4.2 Stimuli details 116
4.2.1 Test 1 stimulus: Simple surfaces (Love) 116
4.2.2 Test 2 stimulus: Natural image (Lena) 116
4.2.3 Test 3 stimulus: Dynamic image with surface gradients (Chaser) 117
4.2.4 Test 4 stimulus: Simple object (Square) 117
4.3 Result details 118
4.3.1 Test 1 results: Simple surfaces (Love) 119
4.3.2 Test 2 results: Natural image (Lena) 130
4.3.3 Test 3 results: Dynamic image with surface gradients (Chaser) 141
4.3.4 Test 4 results: Simplified object (Square) 152
5 Chapter: An emergic model of filling-in the blind-spot 163
5.1 Subject details 163
5.1.1 Test $1,2 \& 3$ subject with dynamic eye 163
5.1.2 Test $4,5,6 \& 7$ subject with static eye 164
5.1.3 Test 8 subject with final saccade 165
5.2 Stimuli details 166
5.2.1 Test 1 stimulus: Simple surfaces (Love) 166
5.2.2 Test 2 stimulus: Natural image (Lena) 167
5.2.3 Test 3 stimulus: Dynamic image with surface gradients (Chaser) 167
5.2.4 Test 4 stimulus: Line static 168
5.2.5 Test 5 stimulus: Line across 168
5.2.6 Test 6 stimulus: Line in 169
5.2.7 Test 7 stimulus: Line static with background masked 169
5.2.8 Test 8 stimulus: ring around the blind spot 170
5.3 Result details 171
5.3.1 Test 1 results: Simple surfaces (Love) 172
5.3.2 Test 2 results: Natural image (Lena) 183
5.3.3 Test 3 results: Dynamic image (Chaser) 194
5.3.4 Test 4 results: Line static 205
5.3.5 Test 5 results: Line across 216
5.3.6 Test 6 results: Line in 227
5.3.7 Test 7 results: Line static with background masked 238
5.3.8 Test 8 results: Filling-in ring then saccade 249
Appendix A: An emergic model of filling-in for anorthoscopic perception 260
A. 1 Subject details. 260
A. $2 \quad$ Stimuli details 262
A.2.1 Test 1 stimulus: Simple surfaces (Love) 262
A.2.2 Test 2 stimulus: Natural image (Lena) 262
A.2.3 Test 3 stimulus: Dynamic image with surface gradients (Chaser) 263
A.2.4 Test 4 stimulus: Simple object (Square) 263
A. $3 \quad$ Result details 264
A.3.1 Test 1 results: Simple surfaces (Love) 265
A.3.2 Test 2 results: Natural image (Lena) 276
A.3.3 Test 3 results: Dynamic image with surface gradients (Chaser) 287
A.3.4 Test 4 results: Simple object (Square) 298
Appendix B: An emergic model of filling-in the foveal blue scotoma 309
B. 1 Subject details. 309
B. 2 Stimuli details 310
B.2.1 Test 1 stimulus: Full white stimulus. 310
B.2.2 Test 2 stimulus: Half white stimulus 311
B.2.3 Test 3 stimulus: Quarter white stimulus (for stationary eye) 312
B.2.4 Test 4 stimulus: Quarter white stimulus (for moving eye) 313
B.2.5 Test 5 stimulus: Arrow stimulus 314
B.2.6 Test 6 stimulus: Point stimulus 315
B. 3 Result details 316
B.3.1 Test 1 results: Full white stimulus 317
B.3.2 Test 2 results: Half white stimulus 328
B.3.3 Test 3 results: Quarter white stimulus 339
B.3.4 Test 4 results: Quarter white stimulus with saccade 350
B.3.5 Test 5 results: Arrow stimulus 356
B.3.6 Test 6 results: Point stimulus with saccade 367
Appendix C: An emergic model of filling-in during blinks 376
C. 1 Subject details 376
C.1.1 Test $1 \& 2$ stimulus 377
C.1.2 Test 3 stimulus 377
C.1.3 Test 4 stimulus 378
C. 2 Stimuli details 379
C.2.1 Test 1 stimulus: Simple surfaces (Love) 379
C.2.2 Test 2 stimulus: Natural image (Lena) 379
C.2.3 Test 3 stimulus: Dynamic image with surface gradients (Chaser) 380
C.2.4 Test 4: Rapid and extended blinking (Square) 380
C. $3 \quad$ Result details 381
C.3.1 Test 1 results: Simple surfaces (Love) 382
C.3.2 Test 2 results: Natural image (Lena) 393
C.3.3 Test 3 results: Dynamic image (Chaser) 404
C.3.4 Test 4 results: Rapid and extended blinking (Square) 415
Appendix D: An emergic model of filling-in from imagination 426
D. 1 Subject details 426
D.1.1 Test 1 subject (Quick) 426
D.1.2 Test 2 \& 3 subject (Slow) 427
D.1.3 Test 4 subject (Slow \& Distorted) 427
D. 2 Stimuli details 428
D. 3 Result details 430
D.3.1 Test 1 results: Imagine quickly 431
D.3.2 Test 2 results: Imagine slowly 440
D.3.3 Test 3 results: Imagine slowly with eye movement 449
D.3.4 Test 4 results: Imagine distorted. 458
References 467

List of Tables

Table 1: Time sequence of homogeneous red filling-in 6
Table 2: Time sequence of homogeneous green filling-in 12
Table 3: Time sequence of homogeneous blue filling-in 18
Table 4: Time sequence of homogeneous blue filling-in under eye motion 24
Table 5: Time sequence of homogeneous blue filling-in under large RFs 30
Table 6: Time sequence of texture not filling-in 36
Table 7: Time sequence of filling-out for simple surfaces 51
Table 8: Time sequence of filling-out for natural image 62
Table 9: Time sequence of filling-out for dynamic image with surface gradients 73
Table 10: Time sequence of filling-out with edge under varying RF sizes 84
Table 11: Time sequence of filling-out image masking under fast motion 95
Table 12: Time sequence of filling-out by planned eye movement under paralysis 104
Table 13: Time sequence of active visual memory decay for simple surfaces
(Love) 119
Table 14: Time sequence of active visual memory decay for natural image (Lena) 130
Table 15: Active visual memory decay results over time for dynamic image
(Chaser) 141
Table 16: Time sequence of active visual memory decay for simplified object
(Square) 152
Table 17: Time sequence of blind spot moving over simple surfaces (Love) 172
Table 18: Time sequence of blind spot moving over natural image (Lena) 183
Table 19: Time sequence of blind spot moving over dynamic image (Chaser) 194
Table 20: Time sequence of static line filling-in over blind spot 205
Table 21: Time sequence of line moving across blind spot while filling-in 216
Table 22: Time sequence of line moving into blind spot then being filled-in 227
Table 23: Time sequence of static line over blind spot with background masked 238
Table 24: Time sequence of filling-in blind spot with ring then saccade 249
Table 25: Time sequence of narrow slit filling-in over simple surface (Love) 265
Table 26: Time sequence of narrow slit filling-in over natural image (Lena) 276
Table 27: Time sequence of narrow slit filling-in over dynamic image with
surface gradients (Chaser). 287
Table 28: Time sequence of narrow slit filling-in over simple object (Square) 298
Table 29: Time sequence of filling-in full white stimulus over foveal bluescotoma317
Table 30: Time sequence of filling-in half white stimulus over foveal blue
scotoma 328
Table 31: Time sequence of filling-in quarter white stimulus over foveal blue
\qquadscotoma339
Table 32: Time sequence of filling-in quarter white stimulus with saccade over foveal blue scotoma 350
Table 33: Time sequence of filling-in arrow stimulus over foveal blue scotoma 356
Table 34: Time sequence of filling-in point stimulus with saccade over foveal blue scotoma 367
Table 35: Time sequence of simple surfaces (Love) with blinks 382
Table 36: Time sequence of natural image with blinks 393
Table 37: Time sequence of dynamic image with blinks 404
Table 38: Time sequence of simple object with rapid and extended blinking 415
Table 39: Time sequence of imagining quickly 431
Table 40: Time sequence of imagining slowly 440
Table 41: Time sequence of imagining slowly with eye movement 449
Table 42: Time sequence of imagining with distorted mosaic 458

List of Illustrations

Illustration 1: Stochastic retina for homogeneity testing 1
Illustration 2: Fine texture stimulus 4
Illustration 3: Stochastic retina mapped into part of the first level RF for filling-
out testing 42
Illustration 4: Stochastic retina with varying RF sizes mapped into $1^{\text {st }}$ level of RFs 45
Illustration 5: Trans-saccadic Test 1 Stimulus (Love) 46
Illustration 6: Trans-saccadic Test 2 Stimulus (Lena) 47
Illustration 7: Trans-saccadic Test 3 stimulus (Chaser) with overlay. 48
Illustration 8: Trans-saccadic Test 4 stimulus (Edge) with overlay 49
Illustration 9: Trans-saccadic Test 5 stimulus (Mask) with overlay 49
Illustration 10: Photoreceptor mosaic of person used in "flash memory" tests 1-4 115
Illustration 11: "Flash memory" view of Love 116
Illustration 12: "Flash memory" view of Lena 116
Illustration 13: "Flash memory" view of Chaser 117
Illustration 14: Test 4 stimulus (Square) with view overlay 117
Illustration 15: Photoreceptor mosaic of person used in blind spot tests 1-3 163
Illustration 16: Photoreceptor mosaic of person used in blind spot tests 4-7 164
Illustration 17: Photoreceptor mosaic of person used in blind spot tests 8 165
Illustration 18: Blind spot Test 1 stimulus (Love) with overlay 166
Illustration 19: Blind spot Test 2 stimulus (Lena) with overlay 167
Illustration 20: Blind spot Test 3 stimulus (Chaser) with overlay 167
Illustration 21: Blind spot Test 4 stimulus (LineStatic) with overlay 168
Illustration 22: Blind spot Test 5 stimulus (LineAcross) with overlay 168
Illustration 23: Blind spot Test 6 stimulus (LineIn) with overlay 169
Illustration 24: Blind spot Test 8 stimulus (Ring) with overlay 170
Illustration 25: Photoreceptor mosaic of person used in experiments 1-4. 260
Illustration 26: Test 1 stimulus (Love) with view overlay 262
Illustration 27: Test 2 stimulus (Lena) with view overlay 262
Illustration 28: Test 3 stimulus (Chaser) with view overlay 263
Illustration 29: Test 4 stimulus (Square) with view overlay 263
Illustration 30: Retina for foveal blue scotoma. 309
Illustration 31: Half white stimulus 311
Illustration 32: Quarter white stimulus 312
Illustration 33: Quarter white shifted stimulus shown as view with overlay 313
Illustration 34: Blue arrow stimulus 314
Illustration 35: Point stimulus 315
Illustration 36: Test $1 \& 2$ subject - their photoreceptor and RF1 mosaics 377
Illustration 37: Test 4 subject - their photoreceptor mosaic 378
Illustration 38: Test 1 stimulus with view overlays 379
Illustration 39: Test 2 stimulus with view overlays 379
Illustration 40: Test 3 stimulus with view overlays 380
Illustration 41: Test 4 stimulus with view overlays 380
Illustration 42: Imagination Test 1 (Fast) person 426
Illustration 43: Imagination Test 4 (Distorted) person 427
Illustration 44: Imagined rectangles 428

2 Chapter: An emergic model of filling-in for colour homogeneity

These supplement the corresponding material in the thesis.

2.1 Subject details

Two virtual subjects were used in these experiments.

2.1. \quad Test $1,2 \& 4$ subject

The same virtual agent, termed Person in
ECS, was used in Experiments 1, 2 and 4, and the contents of their description file follows. The meaning of the parameter names can be found in the thesis. In this

Illustration 1: Stochastic retina for homogeneity testing
particular case, the important and highlighted parameters ensure an L:M:S
(Red:Green:Blue) cone ratio of 7:3:1.

```
[Person]
note =
srt = 10
sex = ai
age = 18
eyecount = 1
ipd = 0
vsize = 17.0
vieweyez = 30
r0conepix = 6
nodalpt = 17
r0coned = 0.5
r0red = 1
r0green = 1
```

rlconed $=3.0$
r1red $=700$
rlgreen $=300$
rlblue $=100$
blindx $=0.0$
$\mathrm{blindy}=0.0$
$\mathrm{blindr}=0.0$
jitmin $=0.1$
jitave $=0.7$
jitmax $=0.9$
p1_0_pixd $=2.0$
p1 0 pix $=850$
p1_0_scale $=2$

p1_0 fanlat $=5.0$
p1_0_fandwn $=1.0$
p1_1_pixd $=4.0$
p1_1_pix = 350
p1_1_scale $=2$
p1_1_fanlat $=2.0$
p1_1_fandwn $=2.0$
p1_2_pixd $=8.0$
p1_2_pix = 150
p1_2_scale $=2$
p1_2_fanlat $=1.2$
p1_2_fandwn $=1.5$

2.1.2 Test 3 subject

This Person was similar to the previous one except for having larger and fewer RFs at the $2^{\text {nd }}$ and $3{ }^{\text {rd }}$ layer. The contents of their description file follows. The meaning of the parameter names can be found in the thesis. In this particular case, the important and highlighted parameters ensure larger RF sizes - the only ones changed from above.

```
[Person]
note = Large RFs
srt = 10
sex = ai
age = 18
eyecount = 1
ipd = 0
vsize = 17.0
vieweyez = 30
r0conepix = 6
nodalpt = 17
r0coned = 0.5
r0red = 1
rOgreen = 1
```

$$
\text { rlconed }=3.0
$$

$$
\text { r1red }=700
$$

$$
\text { r1green }=300
$$

$$
\text { rlblue = } 100
$$

$$
\text { blindx }=0.0
$$

$$
\text { blindy }=0.0
$$

$$
\text { blindr }=0.0
$$

$$
\text { jitmin }=0.1
$$

$$
\text { jitave = } 0.7
$$

$$
\text { jitmax }=0.9
$$

$$
\text { p1_0_pixd }=2.0
$$

$$
\text { p1_0_pix }=850
$$

$$
\text { p1_0_scale }=2
$$

$$
\text { p1_0_fanlat }=5.0
$$

```
p1_0 fandwn = 1.0
p1 0 fandwn = 1.0
\begin{tabular}{l} 
p1 0 fandwn \(=1.0\) \\
\hline p1_1_pixd \(=16.0\) \\
p1_1_pix \(=50\) \\
p1_1_scale \(=2\) \\
p1_1_fanlat \(=2.0\) \\
p1_1_fandwn \(=2.0\) \\
p1_2_pixd \(=64.0_{\text {p1_2_pix }=5}\) \\
p1_2_scale \(=2\) \\
p1_2_fanlat \(=1.2\) \\
p1_2_fandwn \(=1.5\)
\end{tabular}
```


2.2 Stimuli details

Test 1 had Red, Green \& Blue stimulus conditions. The Blue stimulus was reused for both Test 2 and Test 3 . Test 4 used a fine textured stimulus.

2.2.1 Test 1a stimulus (Red)

The meaning of these parameters is fully described in the thesis.

[World]	llcount $=8$	gamma $=1.0$
type $=$ Lilac	spacing $=$	grdcount $=2$
Chaser	0.434782608696	grdwidth $=4$
note $=$ Red Patch	pad $=2.0$	fixfg $=\#$ ff0000
srt $=240$	fg $=\# f f 0000$	fixsize $=1.0$
[Lilac Chaser]	bg $=\# f f 0000$	fixwidth $=1$

2.2.2 Test 1b stimulus (Green)

The meaning of these parameters is fully described in the thesis.

[World]	llcount $=8$	gamma $=1.0$
type $=$ Lilac	spacing $=$	grdcount $=2$
Chaser	0.434782608696	grdwidth $=4$
note $=$ Green Patch	pad $=2.0$	fixfg $=\# 00$ ff00
srt $=240$	fg $=\# 00$ ff00	fixsize $=1.0$
[Lilac Chaser]	bg $=\# 00$ ff00	fixwidth $=1$

2.2.3 Test 1c, $2 \& 3$ stimulus (Blue)

The meaning of these parameters is fully described in the thesis.

```
[World]
type = Lilac
note = Blue Patch
srt = 240
[Lilac Chaser]
```

Chaser 0.434782608696

```
llcount = 8
```

gamma = 1.0
spacing $=\quad$ grdcount $=2$
$0.434782608696 \quad$ grdwidth $=4$
pad $=2.0 \quad$ fixfg $=\# 0000 f f$
fg = \#0000ff fixsize = 1.0
bg = \#0000ff fixwidth = 1

2.2.4 Test 4 stimulus

The meaning of these parameters is fully described in the thesis.

```
[World]
type = Image
note = Textured Patches
srt = 200
[Image]
wx = 576
```

```
wy = 576
```

wy = 576
wbg = \#000000
wbg = \#000000
iname = Fine
iname = Fine
Texture.gif
Texture.gif
ix = 576
ix = 576
iy=576

```
iy=576
```


Illustration 2:
Fine texture stimulus

With image file "Fine Texture.gif" appearing as in Illustration 2).

2.3 Result details

In this section we tabulate a visual frame-by-frame account of results from all tests and their various conditions. Such a frame-byframe account allows for the extraction of precise timing information useful for quantitative analysis. It takes 36 pages. All these results are reduced to a single web page of animated images, available at
http://emergic.upwize.com/?page id=31
The animated account (Leibovitz, 2012a) is preferred as an overview showing behavioural dynamics of filling-in, and makes motion more salient. It also includes the results in greatest detail - they have been scaled down for print in this supplement, and even smaller in the chapter's results and discussion sections.

Each tabulated result has the following columns. Time numerically represents the time tick since the test has started, nominally $10 \mathrm{~ms} /$ tick. All visual results in that table row are after the tick and computation have finished. Stimuli visually represents the stimuli presented to the virtual computer screen. None of the stimuli in this chapter are dynamic. The Photoreceptor Mosaic visually represents what the retina senses by looking at the stimuli. Receptive Fields at Level 1, Level 2 and Level 3, visually represent the three level hierarchy of receptive fields showing their the functional size, not physical size.

2.3.1 Test 1a results: Visual time sequence of homogeneous red filling-in

Table 1: Time sequence of homogeneous red filling-in					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
0					
1					
2					

Table 1: Time sequence of homogeneous red filling-in					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
3					
4					
5					

Table 1: Time sequence of homogeneous red filling-in					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
6					
7					
8					

Table 1: Time sequence of homogeneous red filling-in					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
9					
10					
11					

Table 1: Time sequence of homogeneous red filling-in					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
12					
13					
14					

Table 1: Time sequence of homogeneous red filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
15					
16					

2.3.2 Test 1b results: Visual time sequence of homogeneous green filling-in

Table 2: Time sequence of homogeneous green filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptors	- Receptive Fields		
		(Level 0)	Level 1	Level 2	Level 3
0					
1					
2					

Table 2: Time sequence of homogeneous green filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptors	Receptive Fields		
		(Level 0)	Level 1	Level 2	Level 3
3					
4					
5					

Table 2: Time sequence of homogeneous green filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptors	Receptive Fields		
		(Level 0)	Level 1	Level 2	Level 3
6					
7					
8					

Table 2: Time sequence of homogeneous green filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptors	Receptive Fields		
		(Level 0)	Level 1	Level 2	Level 3
9					
10					
11					

Table 2: Time sequence of homogeneous green filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptors	Receptive Fields		
		(Level 0)	Level 1	Level 2	Level 3
12					
13					
14					

Table 2: Time sequence of homogeneous green filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptors (Level 0)	Receptive Fields		
			Level 1	Level 2	Level 3
15					
16					

2.3.3 Test 1c results: Visual time sequence of homogeneous blue filling-in

Table 3: Time sequence of homogeneous blue filling-in					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
0					
1					
2					

Table 3: Time sequence of homogeneous blue filling-in					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
3					
4					
5					

Table 3: Time sequence of homogeneous blue filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
6					
7					
8					

Table 3: Time sequence of homogeneous blue filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
9					
10					
11					

Table 3: Time sequence of homogeneous blue filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
12		ars			
13					
14		薢			

Table 3: Time sequence of homogeneous blue filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \\ \hline \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
15					
16					

2.3.4 Test $\mathbf{2}$ results: Visual time sequence of homogeneous blue filling-in under eye motion

Table 4: Time sequence of homogeneous blue filling-in under eye motion					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
4					
5					
6					

Table 4: Time sequence of homogeneous blue filling-in under eye motion					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
7					
8			$:$		
9					

Table 4: Time sequence of homogeneous blue filling-in under eye motion					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
10					
11					
12		$\text { \& } 8$			

Table 4: Time sequence of homogeneous blue filling-in under eye motion					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
13					
14					
15					

2.3.5 Test 3 results: Visual time sequence of homogeneous blue filling-in under large RFs

Table 5: Time sequence of homogeneous blue filling-in under large RFs					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
	Stimuir		Level 1	Level 2	Level 3
3					
4				$\stackrel{\bullet}{\bullet} \stackrel{\circ}{\bullet}$	
5				$\stackrel{\bullet}{\bullet} \stackrel{\circ}{\bullet}$	

Table 5: Time sequence of homogeneous blue filling-in under large RFs					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
	Stimuir		Level 1	Level 2	Level 3
6			mosern	$\bullet \quad \stackrel{\circ}{\bullet}$	
7			年		
8				$\stackrel{\bullet}{\bullet} \cdot$	

Table 5: Time sequence of homogeneous blue filling-in under large RFs					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
9			为		
10					
11					

Table 5: Time sequence of homogeneous blue filling-in under large RFs					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
12					
13					
14					

2.3.6 Test 4 results: Visual time sequence of texture not filling-in

Table 6: Time sequence of texture not filling-in					
Time (ticks)	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
0					
1					
2					

Table 6: Time sequence of texture not filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
3					
4					
5					

Table 6: Time sequence of texture not filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
6					
7					
8					

Table 6: Time sequence of texture not filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
9					
10					
11					

Table 6: Time sequence of texture not filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
12					
13					
14					

Table 6: Time sequence of texture not filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
15					
16					

3 Chapter: An emergic model of filling-out for trans-saccadic
 integration

These supplement the corresponding material in the thesis.

3.1 Subject details

Three virtual subjects were used in these experiments. Each is fully characterized by a set
of developmental parameters that will be indicated next. The meaning of these
developmental parameters can be found in the thesis. Note that development includes a
stochastic component so that, for example, while the L:M:S cone ratio may be innately
specified, the colour sensitivity type of individual cones is random.

Illustration 3: Stochastic retina mapped into part of the first level RF for filling-out testing

3.1. \quad Test $\mathbf{1 , 2} \& 5$ subject

The same set of parameters was used in Test $1,2 \& 5$ as shown below. The focus of these parameters is in having a large headcentric visual field beyond the retina (at each RF level), so other factors were simplified. For example, the L:M:S cone ratio was made 1:1:1 (although assignment is stull random), and the RF sizes were held constant. For Test 5, the indicated fan-out factors would influence the speed at which masking occurs.

```[Person] note = Filling-out```	$\begin{aligned} & \text { rlconed }=1.0 \\ & \text { r1red }=800 \end{aligned}$	$\begin{aligned} & \text { p1_0_fanlat }=5.0 \\ & \text { p1_0_fandwn }=2.0 \end{aligned}$
srt $=10$	rlgreen $=800$	p1 1 pixd $=3.0$
sex = ai	rlblue $=800$	p1 ${ }^{-1}$-pix $=1390$
age $=18$	blindx $=0.0$	p1-1-pcale $=2$
eyecount $=1$	blindy $=0.0$	p1_1_fanlat $=2.0$
ipd $=0$	blindr $=0.0$	pl_1-fandwn $=2.0$
vsize = 17.0	jitmin $=0.1$	p1_2_pixd $=4.0$
vieweyez = 50 roconepix $=4$	jitave $=0.7$ jitmax $=0.9$	$\text { p1_2_pix }=782$
roconepix = 4   nodalpt $=17$	jitmax = 0.9   p1 0 pixd $=2.5$	$\mathrm{p} 1^{-} 2^{-} \text {scale }=2$
r0coned $=8.0$	p1_0_pix = 2000	p1_2_fanlat $=1.2$
r0red = 1	p1-0-scale $=2$	p1_2_fandwn $=1.5$
r0green $=1$		

The developed field of view for the photoreceptors, and RFs at Level 1, 2 and 3 was $91.38^{\prime}, 208.43^{\prime}, 208.48^{\prime}$ and $208.45^{\prime}$ respectively.

### 3.1.2 Test 3 subject

This agent was identical to the one used in Test $1 \& 2$ except that one dynamic situational parameter was changed as indicated - the agent was positioned further from the virtual computer monitor.

```
[Person] r0green = 1 p1_0_fanlat = 5.0
note = Filling-out rlconed = 1.0
srt = 10 rlred = 800
sex = ai rlgreen = 800
age = 18 rlblue = 800
eyecount = 1 blindx = 0.0
ipd = 0 blindy = 0.0
vsize = 17.0 blindr = 0.0
vieweyez = 75
nodalpt = 17 jitmax = 0.9
r0coned = 8.0 p1_0_pixd = 2.5
r0red = 1 p1_0_pix = 2000
p1_0_scale = 2
```

Ideally, in experimental papers, such situational parameters do not belong with Person and are better located with the stimuli. Technically, they are part of the agent/environment interaction. In these experiments, the parameter is fixed. In other experiments, the agent could conceivably choose to move closer or further away from the computer screen. It is a person's choice in this respect which is why it is located here.

### 3.1.3 Test 4 subject

This dichromatic agent had a retina whereby the smallest and largest cones varied by a
factor of 4 as indicated in the highlighted parameter. As blue is not allowed in region 0 , it
was not used elsewhere. The stimulus was red/green only.
[Person]
note = Filling-out
srt $=10$
sex = ai
age $=18$
eyecount = 1
ipd $=0$
vsize $=17.0$
vieweyez = 30
r0conepix = 4
nodalpt $=17$
roconed $=8.0$
r0red $=500$
r0green $=500$
rlconed $=4.0$
rlred $=250$
rlgreen $=250$
rlblue $=0$
blindx $=0.0$
blindy $=0.0$
blindr $=0.0$
jitmin $=0.1$
jitave $=0.7$
jitmax $=0.9$
p1_0_pixd $=6.0$
p1_0_pix $=700$
p1_0_scale $=3$
p1_0_fanlat $=9.0$
pl_0_fandwn $=4.0$
p1_1_pixd $=8.0$
p1_1_pix $=430$
p1_1_scale $=3$
p1_1_fanlat $=2.0$
p1_1_fandwn $=2.0$
p1_2_pixd $=10.0$
p1_2_pix $=290$
p1_2_scale $=3$
p1_2_fanlat $=1.2$
p1_2_fandwn $=1.5$


Illustration 4: Stochastic retina with varying RF sizes mapped into $1^{\text {st }}$ level of RFs

### 3.2 Stimuli details

The first three experiments tested filling-out generically. Test 1 used a simple coloured surface stimulus - the block letters spelling LOVE; Test 2 used a natural image stimulus - a picture of Lena; and Test 3 used a dynamic image stimulus with surface gradients - a lilac chaser. Test 4 used a simple edge stimulus to test filling-out under varying topologies - to validate coordinate transformations. Test 5 used a wide image stimulus to test masking under fast eye motion.

### 3.2.1 Test 1 stimulus: Simple surfaces (Love)

This stimulus is used to test filling-out behaviour in a generic fashion using simple surfaces - the block letters spelling LOVE. The meaning of these parameters is fully described in the thesis. The content of file love.png appears in Illustration 5.


Illustration 5: Trans-saccadic
Test 1 Stimulus (Love)
$i x=256$
$i y=256$

### 3.2.2 Test 2 stimulus: Natural image (Lena)

This stimulus is used to test filling-out behaviour in a generic fashion using a natural image - a standard image library picture of Lena (Picard, 1995). The meaning of these parameters is fully described in the thesis. The content of file Lena.tiff appears in Illustration 6.

```
[World]
type = Image [Image]
note = Lena wx = 512
srt = 200 wy = 512
```



Illustration 6: Trans-saccadic Test 2 Stimulus (Lena)

```
wbg = #000000
iname = Lena.tiff
ix = 512
iy = 512
```


### 3.2.3 Test 3 stimulus: Dynamic image with surface gradients (Chaser)

This stimulus (as viewed in Illustration 7) is used to test filling-out behaviour in a generic fashion using a dynamic image with surface gradients - the lilac chaser. The meaning of these parameters is fully described in the thesis. The virtual agent was monitored for 32 ticks ( 320 ms ), so this chaser with 8 lilacs needed to move the lilac gap every 40 ms to complete an entire circuit of motion.


Illustration 7: Trans-saccadic Test 3 stimulus (Chaser) with overlay
[World]
type = Lilac
Chaser
note =
srt $=40$

```
[Lilac Chaser]
```

[Lilac Chaser]

```
[Lilac Chaser]
llcount = 8
llcount = 8
llcount = 8
spacing = 0.1
spacing = 0.1
spacing = 0.1
pad = 1.0
pad = 1.0
pad = 1.0
fg = #ff00ff
fg = #ff00ff
fg = #ff00ff
bg = #007f00
bg = #007f00
bg = #007f00
gamma = 1.0
```

gamma = 1.0

```
gamma = 1.0
```


### 3.2.4 Test 4 stimulus: Edge under varying RF sizes

This simple edge stimulus is used to test the coordinate transformation capability of filling-out under a complex topology of varied RF sizes. The meaning of these parameters is fully described in the thesis. The content of file GreenRed.gif appears in Illustration 8 minus any overlay.

```
[World]
type = Image
note = Edge
srt = 200
```

```
[Image]
wx = 256
wy = 256
w.bg = #000000
```



Illustration 8: Trans-saccadic Test 4 stimulus (Edge) with overlay

```
iname =
GreenRed.gif
ix = 256
iy = 256
```

The stimulus was red and green only, as a varying sized mosaic cannot be constructed with blue in the extreme center, to match biology (Wald, 1967).

### 3.2.5 Test 5 stimulus: Image masking under fast motion

## CHANG IS THE NLYCO STANT HERAC ITUS

## Illustration 9: Trans-saccadic Test 5 stimulus (Mask) with overlay

This wide stimulus is used to test the image masking capability of filling-out when the eye accelerates to a fast speed. The meaning of these parameters is fully described in the thesis. The content of file Mask.png appears within Illustration 9 along with an overlay.

```
[World]
type = Image
[Image]
note = Masking
srt = 200 wbg = #000000
```

[Image]
wx = 1008
wy $=96$
wbg = \#000000

```
iname = Mask.png
```

iname = Mask.png
ix = 1008
ix = 1008
iy = 96

```
iy = 96
```


### 3.3 Result details

In this section we tabulate a visual frame-by-frame account of results from all experiments. Such a frame-by-frame account allows for the extraction of precise timing information useful for quantitative analysis. It takes 64 pages. All these results are reduced to a single web page of animated images, available at
http://emergic.upwize.com/?page id=86
The animated account (Leibovitz, 2012a) is preferred as an overview showing behavioural dynamics of filling-out, memory, masking, etc. and makes image stability more salient. It also includes the results in greatest detail - they have been scaled down for print in this supplement, and even smaller in the chapter's results and discussion sections.

Each table of results has the following columns. Time numerically represents the time tick since the test has started, nominally $10 \mathrm{~ms} /$ tick. All visual results in that table row are after the tick and computation have finished. Stimuli visually represents the stimuli presented to the virtual computer screen, often with retinal overlays. The Photoreceptor Mosaic visually represents what the retina senses by looking at the stimuli. Receptive Fields at Level 1, Level 2 and Level 3, visually represent the three level hierarchy of receptive fields showing their the functional size and placement, not physical size nor placement

### 3.3.1 Test 1 results: Simple surfaces (Love)

Table 7: Time sequence of filling-out for simple surfaces					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
0	VE				
1	VE				
2	VE				


Table 7: Time sequence of filling-out for simple surfaces					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
3	VE				
4	VE				
5	VE				




Table 7: Time sequence of filling-out for simple surfaces					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
12	$V E$				
13	VE				
14					








### 3.3.2 Test 2 results: Natural image (Lena)

Table 8: Time sequence of filling-out for natural image				
Time (ticks)	Stimuli ${ }^{\text {P }}$ Photoreceptor	Receptive Fields		
	Stimuii Mosaic	Level 1	Level 2	Level 3
0				
1				
2				












### 3.3.3 Test 3 results: Dynamic image with surface gradients (Chaser)













### 3.3.4 Test 4 results: Edge under varying RF sizes

Table 10: Time sequence of filling-out with edge under varying RF sizes					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
0	$D$				
1	$D$				
2	$D$				












### 3.3.5 Test 5 results: Image masking under fast motion










3.3.6 Test 6 results: Drawing figures under planned eye movements under paralysis












## 4 Chapter: An emergic model of filling-in after brief stimuli

These supplement the corresponding material in the thesis.

### 4.1 Subject details

A single virtual subject was used in all four experiments.
The person is fully characterized by a set of
developmental parameters that will be indicated next. The meaning of these developmental parameters can be found in the thesis. Note that development includes a stochastic component so that, for example, while the $\mathrm{L}: \mathrm{M}: \mathrm{S}$ cone


Illustration 10: Photoreceptor mosaic of person used in "flash memory" tests 1-4 ratio may be innately specified, the colour sensitivity type of individual cones is random.

Each test had a new incarnation of person.

To focus characterization on memory phenomena, a large homogeneously arranged photoreceptor mosaic was used with equal ratios of red (L), green (M) and blue (S) cones. The size of the cones did not vary. The full set of parameters is shown below.

```
[Person] rlconed = 1.0
note = flash rlred = 3000
srt = 10 rlgreen = 3000
sex = ai rlblue = 3000
age = 18 blindx = 0.0
eyecount = 1 blindy = 0.0
ipd = 0
vsize = 17.0
vieweyez = 100
r0conepix = 4
nodalpt = 17
r0coned = 4.0
r0red = 1
rOgreen = 1
```

```
blindr = 0.0
```

blindr = 0.0
blink0d = 6
blink0d = 6
blinkld = 32
blinkld = 32
jitmin = 0.1
jitmin = 0.1
jitave = 0.7
jitave = 0.7
jitmax = 0.9
jitmax = 0.9
p1_0_pixd = 2.5

```
p1_0_pixd = 2.5
```

p1_0_scale $=2$
p1_0_fanlat $=5.0$
p1_0_fandwn $=2.0$
p1_1_pixd = 5.0
p1_1_pix = 500
pl_1_scale $=2$
p1_1_fanlat $=2.0$
p1_1_fandwn $=2.0$
p1_2_pixd $=7.5$
p1_2_pix = 250
p1_2_scale $=2$
p1_2_fanlat $=1.2$
p1_2_fandwn $=1.5$

### 4.2 Stimuli details

Four different stimuli were used to validate the robustness of the spatiotemporal filling-in behaviour of the ECM architecture.

### 4.2.1 Test 1 stimulus: Simple surfaces (Love)

This stimulus is used to test spatiotemporal filling-in behaviour using simple surfaces - the block letters spelling LOVE. The meaning of these parameters is fully described in the thesis. The content of file love.png appears in Illustration 11 minus any overlay.

```
[World]
type = Image
note = Love
srt = 200
```

```
[Image]
wx = 256
wy = 256
w.bg = #000000
```



Illustration 11: "Flash memory" view of Love

```
iname = love.png
ix = 256
iy = 256
```



Illustration 12: "Flash memory" view of Lena any overlay.

```
[World]
type = Image
```

    [Image]
    $w x=256$
$w y=256$
$\mathrm{wbg}=\# 000000$
[Image]
$w x=256$
$w y=256$
$w b g=\# 000000$

```
iname = Lena.tiff
ix = 256
iy = 256
```


### 4.2.3 Test 3 stimulus: Dynamic image with surface gradients (Chaser)

This stimulus is used to test spatiotemporal filling-in behaviour in a generic fashion using a dynamic image with surface gradients - the lilac chaser. The stimulus appears in Illustration 13 minus any overlay. The meaning of these parameters is fully described in the thesis.


Illustration 13: "Flash memory" view of Chaser

```
[World]
```

[World]
llcount = 8
llcount = 8
type = Lilac
type = Lilac
spacing = 0.1
spacing = 0.1
Chaser
Chaser
note = fg = \#ff00ff
note = fg = \#ff00ff
src = 100 bg = \#007f00
src = 100 bg = \#007f00
[Lilac Chaser]
[Lilac Chaser]
pad = 1.0
pad = 1.0
bg = \#007f00

```
bg = #007f00
```

4.2.4 Test 4 stimulus: Simple object (Square)

This stimulus is used to test spatiotemporal filling-in behaviour using a simple object - a green square over a blue background. The meaning of these parameters is fully described in the thesis. The content of file square.gif appears in Illustration 14 minus any overlay.

```
[World]
type = Image
note = square
srt = 200
```

[Image]
$\mathrm{wx}=256$
$w y=256$


Illustration 14: Test 4 stimulus (Square) with view overlay

```
iname = square.gif
ix = 256
iy = 256
iname = square.gif
\(i x=256\)
iy \(=256\)
```

$\mathrm{wbg}=\# 000000$

```
grdcount = 17
grdwidth = 1
fixfg = #ffff00
fixsize = 0.75
fixwidth = 2
```


### 4.3 Result details

In this section we tabulate a visual frame-by-frame account of results from all experiments. Such a frame-by-frame account allows for the extraction of precise timing information useful for quantitative analysis. It takes 44 pages. All these results are reduced to a single web page of animated images, available at
http://emergic.upwize.com/?page id=210
The animated account (Leibovitz, 2012a) is preferred as an overview showing behavioural dynamics of filling-in, memory, masking, etc. and makes image stability more salient. It also includes the results in greatest detail - they have been scaled down for print in this supplement, and even smaller in the chapter's results and discussion sections.

Each table of results has the following columns. Time numerically represents the time tick since the test has started, nominally $10 \mathrm{~ms} /$ tick. All visual results in that table row are after the tick and computation have finished. Stimuli visually represents the stimuli presented to the virtual computer screen, often with retinal overlays. The Photoreceptor Mosaic visually represents what the retina senses by looking at the stimuli. Receptive Fields at Level 1, Level 2 and Level 3, visually represent the three level hierarchy of receptive fields showing their the functional size and placement, not physical size nor placement

### 4.3.1 Test 1 results: Simple surfaces (Love)

Table 13: Time sequence of active visual memory decay for simple surfaces (Love)					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
6	VE				
7		"-2			
8		$\ldots$			


Table 13: Time sequence of active visual memory decay for simple surfaces (Love)					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
9	VE	"**			
10	VE	"**			
11	VE	"**			


Table 13: Time sequence of active visual memory decay for simple surfaces (Love)					
$\begin{aligned} & \hline \begin{array}{c} \text { Time } \\ \text { (ticks) } \end{array} \\ & \hline \end{aligned}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1		Level 3
12	$\mathbf{L} \mathbf{V E}$	"			
13	$\mathrm{L}, \mathrm{E}$	-			
14	$\mathbf{L O}$	"-			


Table 13: Time sequence of active visual memory decay for simple surfaces (Love)					
$\begin{array}{\|c} \hline \text { Time } \\ \text { (ticks) } \end{array}$	Stimuli	PhotoreceptorMosaic	Receptive Fields		
			Level 1	Level 2	Level 3
15	$\mathrm{LO}$	=			
16	$\mathrm{L} \mathrm{~V}$	-			
17	$\mathbf{L O}$	"'			


Table 13: Time sequence of active visual memory decay for simple surfaces (Love)					
$\begin{array}{\|c} \hline \text { Time } \\ \text { (ticks) } \end{array}$	Stimuli	PhotoreceptorMosaic	Receptive Fields		
			Level 1	Level 2	Level 3
18	$\mathbf{L O}$	=			
19	$\mathrm{LO}$	-			
20	$\mathrm{LO}$	"'			


Table 13: Time sequence of active visual memory decay for simple surfaces (Love)					
$\begin{array}{\|c} \hline \text { Time } \\ \text { (ticks) } \end{array}$	Stimuli	PhotoreceptorMosaic	Receptive Fields		
			Level 1	Level 2	Level 3
21	$\mathrm{LO}$	-			
22	LO	-			
23	$\mathrm{LO}$	"'			


Table 13: Time sequence of active visual memory decay for simple surfaces (Love)					
$\begin{array}{\|c} \hline \text { Time } \\ \text { (ticks) } \end{array}$	Stimuli	PhotoreceptorMosaic	Receptive Fields		
			Level 1	Level 2	Level 3
24	$\mathrm{LO}$	"-			
25	$\mathbf{L O}$	"-			
26	$\mathrm{LO}$	"'			


Table 13: Time sequence of active visual memory decay for simple surfaces (Love)					
Time	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
27	LE	-			
28	$V E$	-			
29	$\mathrm{LO}$	-			


Table 13: Time sequence of active visual memory decay for simple surfaces (Love)					
$\begin{array}{\|c} \hline \text { Time } \\ \text { (ticks) } \end{array}$	Stimuli	PhotoreceptorMosaic	Receptive Fields		
			Level 1	Level 2	Level 3
30	$\mathrm{LO}$	"-			
31	$\mathrm{LO}$	"-			
32	VE	"*			




### 4.3.2 Test 2 results: Natural image (Lena)













### 4.3.3 Test 3 results: Dynamic image with surface gradients (Chaser)












4.3.4 Test 4 results: Simplified object (Square)












## 5 Chapter: An emergic model of filling-in the blind-spot

These supplement the corresponding material in the thesis.

### 5.1 Subject details

Two virtual subjects were used in these six tests. Each is fully characterized by a set of developmental and behavioural parameters that will be indicated next. The meaning of these parameters can be found in the thesis. Note that development includes a stochastic component so that, for example, while the L:M:S cone ratio may be innately specified, the colour sensitivity type of individual cones is random. To simulate the optical blind spot, a fully grown photoreceptor mosaic is initially developed, but all photoreceptors within a specified region are killed.

### 5.1.1 Test $1,2 \& 3$ subject with dynamic eye

Same as Brief Stimuli subject on page 115, but with an optical blind spot configured as highlighted below. Also sRT changed to 20 ms to show it is arbitrary.

[Person]
note $=$


srt $=20$	rlgreen $=3000$   rlblue $=3000$
sex $=$ ai	blindx $=-20.0$
age $=18$	
eyecount $=1$	blindy $=-10.0$
ipd $=0$	blindr $=20.0$
vsize $=17.0$	blink0d $=0$
vieweyez $=100$	jitmin $=0.1$
r0conepix $=4$	jitave $=0.7$
nodalpt $=17$	jitmax $=0.9$
r0coned $=4.0$	p1_0_pixd $=2.5$
r0red $=1$	p1_0_pix $=1800$
r0green $=1$	p1_0_scale $=2$
rlconed $=1.0$	p1_0_fanlat $=5.0$
rlred $=3000$	p1_1_pixd $=5.0$



Illustration 15: Photoreceptor mosaic of person used in blind spot tests $\mathbf{1 - 3}$
p1 1 pix = 500
p1_1_scale = 2
p1_1_fanlat $=2.0$
p1_1_fandwn $=2.0$
p1_2_pixd = 7.5
p1_2_pix = 250
p1_2_scale = 2
p1_2_fanlat = 1.2
p1_2_fandwn $=1.5$

### 5.1.2 Test 4, 5, 6 \& 7 subject with static eye

This virtual agent (Illustration 16) had its blind spot placed in the center of the eye where the size of higher-level RFs could be carefully controlled.

```
[Person]
note =
srt = 10
sex = ai
age = 18
eyecount = 1
ipd = 0
vsize = 17.0
vieweyez = 50
rOconepix = 6
nodalpt = 17
r0coned = 10.0
r0red = 1
rOgreen = 1
r1coned = 1.0
r1red = 300
```



### 5.1.3 Test 8 subject with final saccade

This virtual subject was similar to the previous one but optimized to fit the ring stimulus. Moreover, its $\mathrm{L}: \mathrm{M}: \mathrm{S}$ cone ratio was made similar to humans as the test results will be compared against human data (Spillmann, Otte, Hamburger, \& Magnussen, 2006).


Illustration 17: Photoreceptor mosaic of person used in blind spot tests 8

### 5.2 Stimuli details

The first three tests characterize filling-in across the dynamic optical blind spot due to incessant eye motion using the common Love, Lena and Chaser stimuli. The next three are more traditional static blind spot experiments involving a straight line over the blind spot (Test 4), a line moving across the blind spot (Test 5) and a line being inserted into the blind spot (Test 6).

### 5.2.1 Test 1 stimulus: Simple surfaces (Love)

This stimulus is used to test filling-in behaviour in a generic fashion using simple surfaces - the block letters spelling LOVE. The meaning of these parameters is fully described in the thesis. The content of file blind_love.gif appears in Illustration 18 minus any overlay.

## [World]

type = Image
note $=$ blind spot srt $=200$
[Image]
$w X=256$
$w y=256$
$w b g=\# 000000$
iname =
blind_love.gif


Illustration 18: Blind spot Test 1 stimulus (Love) with overlay

$$
i x=256
$$

$$
i y=256
$$

### 5.2.2 Test 2 stimulus: Natural image (Lena)

This stimulus is used to test filling-in behaviour in a generic fashion using a natural image - a standard image library picture of Lena (Picard, 1995). The meaning of these parameters is fully described in the thesis. The content of file Lena.tiff appears in Illustration 19 minus


Illustration 19: Blind spot Test 2 stimulus (Lena) with overlay

```
iname = Lena.tiff
ix = 256
iy = 256
```

```
[World]
[Image]
type = Image wx = 256
note = blind spot wy = 256
srt = 200 wbg = #000000
```


### 5.2.3 Test 3 stimulus: Dynamic image with surface gradients (Chaser)

This stimulus (as viewed in Illustration 20) is used to test filling-in behaviour in a generic fashion using a dynamic image with surface gradients - the lilac chaser. The meaning of these parameters is fully described in the thesis.

```
[World]
type = Lilac
Chaser
note = blind spot
srt = 100
[Lilac Chaser]
llcount = 8
```

```
spacing = 0.1
pad = 1.0
fg = #ff00ff
bg = #007f00
gamma = 1.0
grdcount = 17
grdwidth = 1
```



Illustration 20: Blind spot Test 3 stimulus (Chaser) with overlay

```
fixfg = #ffff00
fixsize = 0.75
fixwidth = 2
```


### 5.2.4 Test 4 stimulus: Line static

The blind spot was positioned over a horizontal line and was kept static barring any jitter. The screen capture 'eye' provided the view as shown in Illustration 21 with overlay.

```
[World]
type = Screen wscale = 1.0
wy = 256
note = blind spot scrx = 63
srt = 50 scry = 700
[Screen] scrw = 200
wsize = 0 scrh = 200
```



Illustration 21: Blind spot Test 4 stimulus (LineStatic) with overlay

```
movx = 0
movy = 0
```



Illustration 22: Blind spot Test 5 stimulus (LineAcross) with overlay


### 5.2.6 Test 6 stimulus: Line in

The blind spot was positioned just to the left of a horizontal line and was kept static barring any jitter. The screen capture 'eye' provided the view as shown in Illustration 23 with overlay. It effectively caused the line to move leftwards into the blind spot.

```
[World] WX = 256
type = Screen wy = 256
note = blind spot wscale = 1.0
srt = 50 scrx = 63
[Screen] scry = 700
wsize = 0 scrw = 200
```



Illustration 23: Blind spot Test 6 stimulus (LineIn) with overlay


### 5.2.7 Test 7 stimulus: Line static with background masked

With the equivalent stimulus of Test 4 , but with the person not viewing any world, the code was instrumented to inject the horizontal red bar (3.6' height) onto the photoreceptors instead. Effectively, the dark background was masked so as not to interfere with the line in the fixational layer.

### 5.2.8 Test 8 stimulus: ring around the blind spot

This stimulus forms a ring around the blind spot to be filled-in, and then the eye will saccade. It is intended to reproduce the effects of (Spillmann et al., 2006), so the ring was adapted to the perfect circularity of our virtual blind spot.


Illustration 24: Blind spot Test 8 stimulus (Ring) with overlay

### 5.3 Result details

In this section we tabulate a visual frame-by-frame account of results from all experiments. Such a frame-by-frame account allows for the extraction of precise timing information useful for quantitative analysis. It takes [] pages. All these results are reduced to a single web page of animated images, available at
http://emergic.upwize.com/?page id=377
The animated account (Leibovitz, 2012a) is preferred as an overview showing behavioural dynamics of filling-in, memory, masking, etc. and makes image stability more salient. It also includes the results in greatest detail - they have been scaled down for print in this supplement, and even smaller in the chapter's results and discussion sections.

Each table of results has the following columns. Time numerically represents the time tick since the test has started, nominally $10 \mathrm{~ms} /$ tick. All visual results in that table row are after the tick and computation have finished. Stimuli visually represents the stimuli presented to the virtual computer screen, often with retinal overlays. The Photoreceptor Mosaic visually represents what the retina senses by looking at the stimuli. Receptive Fields at Level 1, Level 2 and Level 3, visually represent the three level hierarchy of receptive fields showing their the functional size and placement, not physical size nor placement

### 5.3.1 Test 1 results: Simple surfaces (Love)








Table 17: Time sequence of blind spot moving over simple surfaces (Love)					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
18					
19					
20					






### 5.3.2 Test 2 results: Natural image (Lena)













### 5.3.3 Test 3 results: Dynamic image (Chaser)













### 5.3.4 Test 4 results: Line static













### 5.3.5 Test $\mathbf{5}$ results: Line across

Table 21: Time sequence of line moving across blind spot while filling-in					
$\begin{gathered} \hline \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
0					
1					
2					


Table 21: Time sequence of line moving across blind spot while filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
3					
4					
5					


Table 21: Time sequence of line moving across blind spot while filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
6					
7					
8					


Table 21: Time sequence of line moving across blind spot while filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
9					
10					
11					



Table 21: Time sequence of line moving across blind spot while filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
15					
16					
17					


Table 21: Time sequence of line moving across blind spot while filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
18					
19					
20					


Table 21: Time sequence of line moving across blind spot while filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
21					
22					
23					


Table 21: Time sequence of line moving across blind spot while filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
24					
25		\%			
26					


Table 21: Time sequence of line moving across blind spot while filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
27					
28					
29					


Table 21: Time sequence of line moving across blind spot while filling-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
30					
31					
32					

5.3.6 Test 6 results: Line in





Table 22: Time sequence of line moving into blind spot then being filled-in

Table 22: Time sequence of line moving into blind spot then being filled-in					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
12					
13					
14					


Table 22: Time sequence of line moving into blind spot then being filled-in					
Time (ticks)	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
15					
16					
17					


Table 22: Time sequence of line moving into blind spot then being filled-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
18					
19					
20					


Table 22: Time sequence of line moving into blind spot then being filled-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
21					
22					
23					


Table 22: Time sequence of line moving into blind spot then being filled-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
24					
25					
26					


Table 22: Time sequence of line moving into blind spot then being filled-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
27					
28					
29					


Table 22: Time sequence of line moving into blind spot then being filled-in					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
30					
31					
32					

### 5.3.7 Test 7 results: Line static with background masked













### 5.3.8 Test 8 results: Filling-in ring then saccade













## Appendices

## Appendix A: An emergic model of filling-in for anorthoscopic

## perception

These supplement the corresponding material in the thesis.

## A. 1 Subject details

A single virtual subject was used in all four experiments.
The person is fully characterized by a set of
developmental parameters that will be indicated next. The meaning of these developmental parameters can be found in the thesis. Note that development includes a stochastic component so that, for example, while the L:M:S cone ratio may be innately specified, the colour sensitivity type


Illustration 25: Photoreceptor mosaic of person used in experiments 1-4.
Suppressed photoreceptors are shown in grey to mimic anorthoscopic perception. of individual cones is random. Each test had a new incarnation of person.

To focus characterization on the filling-in for anorthoscopic perception phenomena, a large homogeneously arranged photoreceptor mosaic was used with equal ratios of red (L), green (M) and blue (S) cones. The size of the cones did not vary.

The software was further instrumented to supress all the developed photoreceptors except for a central $8^{\prime}$ wide strip. The full set of parameters is shown below, but the lateral fan-out parameters are highlighted as these support the anorthoscopic phenomenon.

```
[Person]
note = slit
srt = 10
sex = ai
age = 18
eyecount = 1
ipd = 0
vsize = 17.0
vieweyez = 100
r0conepix = 4
nodalpt = 17
r0coned = 4.0
rOred = 1
rOgreen = 1
```

```
rlconed = 1.0
rlred = 3000
rlgreen = 3000
r1blue = 3000
blindx = 0.0
blindy = 0.0
blindr = 0.0
blink0d = 0
blinkld = 0
jitmin = 0.1
jitave = 0.7
jitmax = 0.9
p1_0_pixd = 2.5
p1_0_pix = 1800
```

p1 0 scale $=2$
p1_0_fanlat $=5.0$
p1_0_fandwn $=2.0$
p1_1_pixd $=5.0$
p1_1_pix $=500$
p1_1_scale $=2$
p1_1_fanlat $=2.0$
p1_1_fandwn $=2.0$
p1_2_pixd $=7.5$
p1_2_pix $=250$
p1 2_scale $=2$
p1_2_fanlat $=1.2$
p1_2_fandwn $=1.5$

## A. 2 Stimuli details

Four different stimuli were used to validate the robustness of the anorthoscopic filling-in behaviour of the ECM architecture.

## A.2.1 Test 1 stimulus: Simple surfaces (Love)

This stimulus is used to test anorthoscopic filling-in behaviour using simple surfaces - the block letters spelling LOVE. The meaning of these parameters is fully described in the thesis. The content of file love.png appears in Illustration 26 minus any overlay.

```
[World]
type = Image
note = Love
srt = 200
```

```
[Image]
wx = 256
wy = 256
w.bg = #000000
```


## A.2.2 Test 2 stimulus: Natural image (Lena)

This stimulus is used to test anorthoscopic filling-in behaviour using a natural image - a standard image library picture of Lena (Picard, 1995). The meaning of these parameters is fully described in the thesis. The content of file Lena.tiff appears in Illustration 27 minus


Illustration 26: Test 1 stimulus (Love) with view overlay

```
iname = love.png
ix = 256
iy = 256
```



Illustration 27: Test 2 stimulus (Lena) with view overlay any overlay.

```
[World]
type = Image
note = Lena
srt = 200
```

```
[Image]
wx = 256
wy = 256
w.bg = #000000
```


## A.2.3 Test 3 stimulus: Dynamic image with surface gradients (Chaser)

This stimulus is used to test anorthoscopic filling-in behaviour in a generic fashion using a dynamic image with surface gradients - the lilac chaser. The meaning of these parameters is fully described in the thesis. The virtual agent was monitored for 32 ticks ( 320 ms ), so this chaser with 8 lilacs needed to move the lilac gap every 40 ms to complete an entire circuit of motion.

## A.2.4 Test 4 stimulus: Simple object (Square)

This stimulus is used to test anorthoscopic filling-in behaviour using a simple object - a green square over a blue background. The meaning of these parameters is fully described in the thesis. The content of file square.gif appears in Illustration 29 minus any overlay.


Illustration 28: Test 3 stimulus (Chaser) with view overlay

```
[World]
type = Lilac
Chaser
note =
srt = 40
[World]
type = Lilac
Chaser
note =
srt \(=40\)
```

```
llcount = 8
spacing = 0.1
pad = 1.0
fg = #ff00ff
bg = #007f00
gamma = 1.0
```

[World]	$[$ Image]
type $=$ Image	$\mathrm{wx}=256$
note $=$ square	$\mathrm{wy}=256$
srt $=200$	$\mathrm{wbg}=\# 000000$

```
[Image]
wx = 256
wy = 256
wbg = #000000
```



Illustration 29: Test 4 stimulus (Square) with view overlay
ix $=256$
iy $=256$

```
iname = square.gif
```

```
iname = square.gif
```

grdcount $=17$
grdwidth = 1
fixfg = \#ffffoo
fixsize $=0.75$
fixwidth = 2

The purpose of this stimulus is to eventually compare it to its black and white counterpart in (Francis \& Grossberg, 1996). However, that must await the next chapter.

## A. 3 Result details

In this section we tabulate a visual frame-by-frame account of results from all experiments. Such a frame-by-frame account allows for the extraction of precise timing information useful for quantitative analysis. It takes 44 pages. All these results are reduced to a single web page of animated images, available at
http://emergic.upwize.com/?page id=434
The animated account (Leibovitz, 2012a) is preferred as an overview showing behavioural dynamics of filling-in, memory, etc. and makes image stability more salient. It also includes the results in greatest detail - they have been scaled down for print in this supplement, and even smaller in the chapter's results and discussion sections.

Each table of results has the following columns. Time numerically represents the time tick since the test has started, nominally $10 \mathrm{~ms} /$ tick. All visual results in that table row are after the tick and computation have finished. Stimuli visually represents the stimuli presented to the virtual computer screen, often with retinal overlays. The Photoreceptor Mosaic visually represents what the retina senses by looking at the stimuli. Receptive Fields at Level 1, Level 2 and Level 3, visually represent the three level hierarchy of receptive fields showing their the functional size and placement, not physical size nor placement

## A.3.1 Test 1 results: Simple surfaces (Love)

Table 25: Time sequence of narrow sitit filing-in over simple surface (Love)					
$\begin{aligned} & \text { Time } \\ & \text { (ticks) } \end{aligned}$	Stimuli	Photoreceptor Mosaic	Level 1	$\frac{\text { eceptive Fiel }}{\text { Level } 2}$	Level 3
6	LO				
7	LO				
8	LO				



Table 25: Time sequence of narrow slit filling-in over simple surface (Love)					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
12	LO				
13					
14					










## A.3.2 Test 2 results: Natural image (Lena)













## A.3.3 Test 3 results: Dynamic image with surface gradients (Chaser)













## A.3.4 Test 4 results: Simple object (Square)













## Appendix B: An emergic model of filling-in the foveal blue scotoma

These supplement the corresponding material in the thesis.

## B. 1 Subject details

A single virtual subject was used in all six experiments. The person is fully characterized by a set of developmental parameters that will be indicated next.

Note that development includes a stochastic component so that, for example, while the L:M:S cone ratio may be


Illustration 30: Retina for foveal blue scotoma innately specified, the colour sensitivity type of individual cones is random. Each test had a new incarnation of person.

To focus characterization on the filling-in of the blue scotoma phenomenon, a retina with two regions was generated. The inner region was devoid of blue (S) cones having an equal ratio of red (L) and green (M) cones. The outer region had an equal ratio of all three cone sensitivities. The size of the cones did not vary. The parameters of interest are outlined.

```
[Person]
note = blue
srt = 10
sex = ai
age = 18
eyecount = 1
ipd = 0
vsize = 17.0
vieweyez = 50
r0conepix = 6
nodalpt = 17
r0coned = 10.0
r0red = 100
```

r0green $=100$
rlconed $=1.0$
r1red $=200$
r1green $=200$
r1blue $=200$
blindx $=0.0$
blindy $=0.0$
blindr $=0.0$
jitmin $=0.1$
jitave $=0.7$
jitmax $=0.9$
p1_0_pixd $=2.0$
p1_0_pix $=300$
p1_0_scale = 1
p1_0_fanlat $=5.0$
p1_0_fandwn $=1.0$
p1_1_pixd = 3.0
p1_1_pix = 150
p1_1_scale = 1
p1_1_fanlat $=2.0$
p1_1_fandwn $=2.0$
p1_2_pixd = 10.0
p1_2_pix = 22
p1_2_scale = 1
p1_2_fanlat = 1.2
p1_2_fandwn $=1.5$

## B. 2 Stimuli details

The first test tested the filling-in over the entire blue scotoma via a full white stimulus. Test 2 tested filling-in bounded by the borders of a half white stimulus, while Test $3 \& 4$ tested filling-in bounded by two borders of a quarter white stimulus wedge, with stationary and moving eyes respectively. Test 5 tested the filling in of an arrow across the scotoma.

## B.2.1 Test 1 stimulus: Full white stimulus

This stimulus is used to test the filling-in behaviour over the entire foveal blue scotoma region. A full white stimulus was used. When blue is subtracted from white, then yellow remains. It is the interior yellow that must be filled in by the outer white. The stimulus is fully specified by the following parameters, whose meaning is described in the thesis.

```
[World]
type = Lilac
Chaser 0.434782608696
note = white
srt = 240
[Lilac Chaser]
```

gamma = 1.0

```
gamma = 1.0
grdcount = 2
grdcount = 2
grdwidth = 4
grdwidth = 4
fixfg = #ffffff
fixfg = #ffffff
fixsize = 1.0
fixsize = 1.0
fixwidth = 1
```

```
fixwidth = 1
```

```

\section*{B.2.2 Test 2 stimulus: Half white stimulus}

This stimulus is used to test the border respecting capability of the filling-in behaviour over half the foveal blue scotoma region. A half black \& white stimulus was used (with one border). When blue is subtracted from white, then yellow remains. It is the interior yellow that

Illustration 31: Half white stimulus must be filled in by the outer white while respecting completed borders. The stimulus is fully specified by the following parameters, whose meaning is described in the thesis. The content of file hWhite.png appears in Illustration 31.
```

[World]
type = Image
note = half white
srt = 200

```
```

[Image]

```
[Image]
wx = 256
wx = 256
wy = 256
wy = 256
w.bg = #000000
```

w.bg = \#000000

```
```

iname = hWhite.png

```
iname = hWhite.png
ix = 256
ix = 256
iy = 256
```

iy = 256

```

\section*{B.2.3 Test 3 stimulus: Quarter white stimulus (for stationary eye)}

This stimulus is used to test the double intersecting border respecting capability of the filling-in behaviour over a quarter of the foveal blue scotoma region. A \(3 / 4\) black \& \(1 / 4\) white stimulus was used (with two borders). When blue is subtracted from white, then yellow remains. It is the interior yellow that must be

Illustration 32: Quarter white stimulus filled in by the outer white while respecting completed borders. The stimulus is fully specified by the following parameters, whose meaning is described in the thesis. The content of file \(q\) White.png appears in Illustration 32.
```

[World]
type = Image
note = q white
srt = 200

```
```

[Image]

```
[Image]
wx = 256
wx = 256
wy = 256
wy = 256
iname = qWhite.png
ix = 256
wbg = #000000
wbg = #000000
iy = 256
```


## B.2.4 Test 4 stimulus: Quarter white stimulus (for moving eye)

This stimulus is used to test the double intersecting border respecting capability of the filling-in behaviour over a quarter of the foveal blue scotoma region while the eye is in motion. $\mathrm{A} 3 / 4$ black \& $1 / 4$ white stimulus was used (with two borders), but shifted to the right to allow the eye to move across. When blue is subtracted from white, then yellow remains. It is the interior yellow that


Illustration 33: Quarter white shifted stimulus shown as view with overlay must be filled in by the outer white while respecting completed borders. The stimulus is fully specified by the following parameters, whose meaning is described in the thesis.

The content of file qWhite2.png appears in Illustration 33 (minus any overlay).

```
[World]
type = Image }\quad\textrm{wx}=25
note = q white2
srt = 200
```

```
[Image]
```

[Image]

```
wy = 256
```

wy = 256
w.bg = \#000000

```
w.bg = #000000
```

```
iname =
```

iname =
qWhite2.png
qWhite2.png
ix = 256
ix = 256
iy = 256

```
iy = 256
```


## B.2.5 Test 5 stimulus: Arrow stimulus

This stimulus is used to test the border respecting capability of the filling-in behaviour over a thin arrow crossing the foveal blue scotoma region. A blue arrow is used over a grey background. When blue is subtracted from grey, then a greenish yellow tinge remains. It is the


Illustration 34: Blue arrow stimulus Shown in view with overlay. interior greenish yellow that must be filled in by the outer grey while respecting completed borders. Moreover, the blue arrow will appear as dark. It too needs to be filled in with blue. The stimulus is fully specified by the following parameters, whose meaning is described in the thesis. The content of file arrow.png appears with view overlays in Illustration 34 (minus any overlay).

[World]	$[$ Image]	iname = arrow.png
type $=$ Image	$\mathrm{wX}=256$	ix $=256$
note $=$ arrow	$\mathrm{wy}=256$	iy $=256$
srt $=200$	$\mathrm{wbg}=\# 000000$	

## B.2.6 Test 6 stimulus: Point stimulus

This stimulus is used to test the filling-in behaviour within the foveal blue scotoma as it saccades across a small blue point. The stimulus is fully specified by the following parameters, whose meaning is described in the thesis. The content of file point.png appears with view overlays in Illustration 35.

```
[World]
type = Image
note = arrow
srt = 200
```

```
[Image]
wx = 256
wy = 256
wbg = #000000
```



Illustration 35: Point stimulus Shown in view with overlay.

```
iname = point.png
ix = 256
iy = 256
```


## B. 3 Result details

In this section we tabulate a visual frame-by-frame account of results from all tests. Such a frame-by-frame account allows for the extraction of precise timing information useful for quantitative analysis. It takes 59 pages. All these results are reduced to a single web page of animated images, available at
http://emergic.upwize.com/?page id=165
The animated account (Leibovitz, 2012a) is preferred as an overview showing behavioural dynamics of jitter, filling-in, memory, etc. and makes image stability more salient. It also includes the results in greatest detail - they have been scaled down for print in this supplement, and even smaller in the chapter's results and discussion sections.

Each table of results has the following columns. Time numerically represents the time tick since the test has started, nominally $10 \mathrm{~ms} /$ tick. All visual results in that table row are after the tick and computation have finished. Stimuli visually represents the stimuli presented to the virtual computer screen, often with retinal overlays. The Photoreceptor Mosaic visually represents what the retina senses by looking at the stimuli. Receptive Fields at Level 1, Level 2 and Level 3, visually represent the three level hierarchy of receptive fields showing their the functional size and placement, not physical size nor placement

## B.3.1 Test 1 results: Full white stimulus

Table 29: Time sequence of filling-in full white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
0					
1					
2					


Table 29: Time sequence of filling-in full white stimulus over foveal blue scotoma					
$\begin{array}{\|c\|} \hline \text { Time } \\ \text { (ticks) } \\ \hline \end{array}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
3					
4					
5					


Table 29: Time sequence of filling-in full white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
6					
7					
8					


Table 29: Time sequence of filling-in full white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$		Photoreceptor	Receptive Fields		
	Stimuli	Mosaic	Level 1	Level 2	Level 3
9					
10					
11					


Table 29: Time sequence of filling-in full white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
12					
13					
14					


Table 29: Time sequence of filling-in full white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
15					
16					
17					


Table 29: Time sequence of filling-in full white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$		Photoreceptor	Receptive Fields		
	Stimuli	Mosaic	Level 1	Level 2	Level 3
18					
19					
20					


Table 29: Time sequence of filling-in full white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$		Photoreceptor	Receptive Fields		
	Stimuli	Mosaic	Level 1		Level 3
21					
22					
23					


Table 29: Time sequence of filling-in full white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
24					
25					
26					


Table 29: Time sequence of filling-in full white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$		Photoreceptor	Receptive Fields		
	Stimuli	Mosaic	Level 1	Level 2	Level 3
27					
28					
29					


Table 29: Time sequence of filling-in full white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$		Photoreceptor	Receptive Fields		
	Stimuli	Mosaic	Level 1		Level 3
30					
31					
32					

## B.3.2 Test 2 results: Half white stimulus

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma					
Time (ticks)	Stimuli	Photoreceptor	Receptive Fields		
	Stimuit	Mosaic	Level 1	Level 2	Level 3
0					
1					
2					

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma					
Time (ticks)	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
3					
4					
5					


Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma					
$\begin{array}{\|c} \hline \text { Time } \\ \text { (ticks) } \\ \hline \end{array}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
6					
7					
8					


Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
	Stimuli	Mosaic	Level 1	Level 2	Level 3
9					
10					
11					

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma					
Time (ticks)	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
12					
13					
14					


Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
15					
16					
17					

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
18					
19					
20					

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma					
Time (ticks)	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
21					
22					
23					

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma					
Time (ticks)	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
24					
25					
26					

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
27					
28					
29					

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma

Table 30: Time sequence of filling-in half white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
30					
31					
32					

## B.3.3 Test 3 results: Quarter white stimulus

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
0					
1					
2					

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma					
Time (ticks)	Stimuli	Photoreceptor   Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
3					
4					
5					

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
6					
7					
8					

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma


Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1	Level 2	Level 3
12					
13					
14					

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma


Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma					
$\begin{array}{\|c\|} \hline \text { Time } \\ \text { (ticks) } \\ \hline \end{array}$	Stimuli	PhotoreceptorMosaic	Receptive Fields		
			Level 1	Level 2	Level 3
18					
19					
20				${ }^{\infty}$	

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma


Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma					
Time (ticks)	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
24					
25					
26					

Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma


Table 31: Time sequence of filling-in quarter white stimulus over foveal blue scotoma


## B.3.4 Test 4 results: Quarter white stimulus with saccade








## B.3.5 Test 5 results: Arrow stimulus








Table 33: Time sequence of filling-in arrow stimulus over foveal blue scotoma					
$\begin{array}{\|c\|} \hline \text { Time } \\ \text { (ticks) } \end{array}$	Stimuli	Photoreceptor	Receptive Fields		
			Level 1	Level 2	Level 3
18					
19					
20					




Table 33: Time sequence of filling-in arrow stimulus over foveal blue scotoma					
$\begin{array}{\|c} \hline \begin{array}{c} \text { Time } \\ \text { (ticks) } \end{array} \\ \hline \end{array}$	Stimuli	Photoreceptor	Receptive Fields		
		Mosaic	Level 1		Level 3
27					
28					
29					



## B.3.6 Test 6 results: Point stimulus with saccade











## Appendix C: An emergic model of filling-in during blinks

These supplement the corresponding material in the thesis.

## C. 1 Subject details

Three virtual subjects were used in these four tests. Each is fully characterized by a set of developmental and behavioural parameters that will be indicated next. The meaning of these parameters can be found in the thesis. Note that development includes a stochastic component so that, for example, while the L:M:S cone ratio may be innately specified, the colour sensitivity type of individual cones is random. The behavioural parameters, such as eye blink rate are also mentioned in the test procedure.

Originally, eye blink suppression was simulated by detaching a person from the world being viewed, then re-attaching them. This would have been a procedure change. However, we recently place eyed blink configuration parameters within person, so they are detailed and highlighted here as well.

## C.1.1 Test $1 \& 2$ stimulus

Same as Test 1 on page 43, but with eye
blink configured as highlighted below.

```
[Person]
note = blink
srt = 10
sex = ai
age = 18
eyecount = 1
ipd = 0
vsize = 17.0
vieweyez = 50
r0conepix = 4
nodalpt = 17
r0coned = 8.0
r0red = 1
r0green = 1
rlconed = 1.0
r1red = 800
```

$$
\text { blindx }=0.0
$$

$$
\text { blindy }=0.0
$$

$$
\text { blindr }=0.0
$$

$$
\text { blink0d }=5
$$

$$
\text { blink1d = } 3
$$

$$
\text { jitmin }=0.1
$$

$$
\text { jitave }=0.7
$$

$$
\text { jitmax }=0.9
$$

$$
\text { p1_0_pixd }=2.5
$$

$$
\text { p1_0_pix = } 2000
$$

$$
\text { p1_0_scale }=2
$$

$$
\text { p1_0_fanlat }=5.0
$$

$$
\begin{aligned}
& \text { r1green } \\
& \text { = } 800 \\
& \text { r1blue = } \\
& 800 \\
& \text { Illustration 36: Test } 1 \& 2 \text { subject - their } \\
& \text { photoreceptor and RF1 mosaics }
\end{aligned}
$$



## C.1.2 Test 3 stimulus

Same as Test 3 in on page 44, but with eye blink configured as highlighted below.

```
[Person]
note = blink
srt = 10
sex = ai
age = 18
eyecount = 1
ipd = 0
vsize = 17.0
vieweyez = 75
rOconepix = 4
nodalpt = 17
r0coned = 8.0
r0red = 1
r0green = 1
```

```
r1coned = 1.0
```

r1coned = 1.0
rlred = 800
rlred = 800
rlgreen = 800
rlgreen = 800
rlblue = 800
rlblue = 800
blindx = 0.0
blindx = 0.0
blindy = 0.0
blindy = 0.0
blindr = 0.0
blindr = 0.0
blink0d=5
blink0d=5
blinkld = 3
blinkld = 3
jitmin = 0.1
jitmin = 0.1
jitave = 0.7
jitave = 0.7
jitmax = 0.9
jitmax = 0.9
p1_0_pixd = 2.5
p1_0_pixd = 2.5
p1_0_pix = 2000

```
p1_0_pix = 2000
```

```
p1_0_scale = 2
p1_0_fanlat = 5.0
p1_0_fandwn = 2.0
p1_1_pixd = 3.0
p1_1_pix = 1390
pl_1_scale = 2
p1_1_fanlat = 2.0
p1_1_fandwn = 2.0
p1_2_pixd = 4.0
p1_2_pix = 782
p1_2_scale = 2
p1_2_fanlat = 1.2
p1_2_fandwn = 1.5
```


## C.1.3 Test 4 stimulus

Same as Tests 1-4 on page 115, but with eye blink configured as highlighted below. This Person had a large yet simple retina to focus analysis on memory effects related to filling-in. The cones were of the same size throughout and the L:M:S ratio was 1:1:1. Eye blinks

Illustration 37: Test 4 subject their photoreceptor mosaic were extremely rapid and extended, i.e., they were closed


for 2 out of every 3 ticks.

```
[Person]
note = blink
srt = 10
sex = ai
age = 18
eyecount = 1
ipd = 0
vsize = 17.0
vieweyez = 100
r0conepix = 4
nodalpt = 17
r0coned = 4.0
r0red = 1
rOgreen = 1
[Person]
```

```
 r1coned = 1.0
 r1red = 3000
 rlgreen = 3000
 r1blue = 3000
 blindx = 0.0
 blindy = 0.0
 blindr = 0.0
blink0d=1
 jitave = 0.7
jitmax = 0.9
p1_0_pixd = 2.5
p1_0_pix = 1800
```

p1_0_scale = 2
p1_0_fanlat $=5.0$
p1_0_fandwn $=2.0$
pl_1_pixd $=5.0$
p1_1_pix = 500
p1_1_scale $=2$
p1_1_fanlat $=2.0$
p1_1_fandwn $=2.0$
p1_2_pixd $=7.5$
p1_2_pix = 250
p1_2_scale $=2$
p1_2_fanlat = 1.2
p1_2_fandwn $=1.5$

## C. 2 Stimuli details

The first three tests characterized temporal filling-in across eye blinks generically. Test 1 used a simple coloured surface stimulus - the block letters spelling LOVE; Test 2 used a natural image stimulus - a picture of Lena; and Test 3 used a dynamic image stimulus with surface gradients - a lilac chaser. Test 4 used a simple square stimulus to test fillingin across rapid and extensive eye-blinks.

## C.2.1 Test 1 stimulus: Simple surfaces (Love)

Same as Test 1 on page 46 as in Illustration 38.

## C.2.2 Test 2 stimulus: Natural image (Lena)

Same as Test 2 on page 47 as in Illustration 39.


Illustration 38: Test 1 stimulus with view overlays


Illustration 39: Test 2 stimulus with view overlays

## C.2.3 Test 3 stimulus: Dynamic image with surface gradients (Chaser)

Same as Test 3 on page 48 as in Illustration 40.


Illustration 40: Test 3 stimulus with view overlays


Illustration 41: Test 4 stimulus with view overlays

## C. 3 Result details

In this section we tabulate a visual frame-by-frame account of results from all experiments. Such a frame-by-frame account allows for the extraction of precise timing information useful for quantitative analysis. It takes 44 pages. All these results are reduced to a single web page of animated images, available at
http://emergic.upwize.com/?page id=308
The animated account (Leibovitz, 2012a) is preferred as an overview showing behavioural dynamics of filling-out thru blinks and makes image stability across blinks more salient. It also includes the results in greatest detail - they have been scaled down for print in this supplement, and even smaller in the chapter's results and discussion sections.

Each table of results has the following columns. Time numerically represents the time tick since the test has started, nominally $10 \mathrm{~ms} /$ tick. All visual results in that table row are after the tick and computation have finished. Stimuli visually represents the stimuli presented to the virtual computer screen, often with retinal overlays. The Photoreceptor Mosaic visually represents what the retina senses by looking at the stimuli. Receptive Fields at Level 1, Level 2 and Level 3, visually represent the three level hierarchy of receptive fields showing their the functional size and placement, not physical size nor placement

## C.3.1 Test 1 results: Simple surfaces (Love)

Table 35: Time sequence of simple surfaces (Love) with blinks					
$\begin{gathered} \text { Time } \\ \text { (ticks) } \end{gathered}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
0	VE				
1	VE				
2	VE				




Table 35: Time sequence of simple surfaces (Love) with blinks					
$\begin{array}{\|c} \hline \text { Time } \\ \text { (ticks) } \\ \hline \end{array}$	Stimuli	Photoreceptor Mosaic	Receptive Fields		
			Level 1	Level 2	Level 3
9					
10	VE				
11					









## C.3.2 Test 2 results: Natural image (Lena)













## C.3.3 Test 3 results: Dynamic image (Chaser)













## C.3.4 Test 4 results: Rapid and extended blinking (Square)













## Appendix D: An emergic model of filling-in from imagination

These supplement the corresponding material in the thesis.

## D. 1 Subject details

Three virtual subjects were used in these four tests. Each is fully characterized by a set of developmental and behavioural parameters that will be indicated next. The meaning of these parameters can be found in the thesis. Note that development includes a stochastic component so that, for example, while the L:M:S cone ratio may be innately specified, the colour sensitivity type of individual cones is random.

## D.1.1 Test 1 subject (Quick)

Same as filling-out for trans-saccadic integration person of Test 1 on page 43 - one can imagine both within the photoreceptor region and without.

```
[Person]
note = Imagine
srt = 10
sex = ai
age = 18 blindy = 0.0
eyecount = 1 blindr = 0.0
ipd = 0 jitmin = 0.1
vsize = 17.0 jitave = 0.7
vieweyez = 50 jitmax = 0.9
r0conepix = 4 pl_0_pixd = 2.5
nodalpt = 17 pl_0_pix = 2000
r0coned = 8.0 pl_0_scale = 2
r0red = 1 pl_0_fanlat = 5.0
r0green = 1 p1_0_fandwn = 2.0
rlconed = 1.0
```

```
r1red = 800
```

r1red = 800
rlgreen = 800
rlgreen = 800
rlblue = 800
rlblue = 800
blindx = 0.0
blindx = 0.0
p1_1_pixd = 3.0

```
p1_1_pixd = 3.0
```



Illustration 42: Imagination Test 1 (Fast) person

$$
\text { p1_1_pix }=1390
$$

$$
\mathrm{pl} 1 _ \text {scale }=2
$$

$$
\mathrm{p1} 1_{1}^{1} \text { fanlat }=2.0
$$

$$
\mathrm{pl}_{1}^{1} 1^{-} \text {fandwn }=2.0
$$

$$
\mathrm{pl} 1_{2} \text { _pixd }=4.0
$$

$$
\mathrm{pl} 1_{2} \text { _pix }=782
$$

p1_2_scale $=2$
p1_2_fanlat $=1.2$
p1_2_fandwn $=1.5$

Produces 572459 Emergic Links.

## D.1.2 Test $2 \& 3$ subject (Slow)

Similar to Test 1 but with less fan-out to characterize the slowing down of imagination.

```
[Person]
note = Imagine
Slow
srt = 10
nodalpt = 17
r0coned = 8.0
rOred = 1
```

sex $=$ ai $\quad$ rlblue $=800$
age $=18 \quad$ blindx $=0.0$
eyecount $=1 \quad$ blindy $=0.0$
ipd $=0 \quad$ blindr $=0.0$
vsize $=17.0 \quad$ jitmin $=0.1$
vieweyez $=50 \quad$ jitave $=0.7$
r0conepix $=4 \quad$ jitmax $=0.9$
r0green $=1$
rlconed $=1.0$
rlred $=800$
rlgreen $=800$
pl_0_pixd $=2.5$
p1_0_pix = 2000

p1_0_scale $=2$
rlblue $=800$
blindx $=0.0$
$\mathrm{blindy}=0.0$
blindr $=0.0$
jitmin $=0.1$
jitave $=0.7$
jitmax $=0.9$
p1 2 fandwn $=1.0$

Produces 246289 Emergic Links.

## D.1.3 Test 4 subject (Slow \& Distorted)

Similar to Test 2-3 but with high eccentricity dependent heterogeneity and 10:1 R:G ratio to characterize imagination of straight lines.

```
[Person]
note = Filling-out
srt = 10
sex = ai
age = 18
eyecount = 1
ipd = 0
vsize = 17.0
vieweyez = 50
r0conepix = 4
nodalpt = 17
r0coned = 8.0
r0red = 1000
r0green = 100
rlconed = 4.0
r1red = 800
rlgreen = 800
r1blue = 800
blindx = 0.0
blindy = 0.0
blindr = 0.0
jitmin = 0.1
jitave = 0.7
jitmax = 0.9
p1 0 pixd = 2.5
p1_0_pix = 2000
p1_0_scale = 2
p1-__scale=2
p1_0_fanlat = 1.0
p1_0_fandwn = 1.0
p1_1_pixd = 3.0
p1_1_pix = 1390
```

Illustration 43: Imagination Test 4 (Distorted) person


```
p1_1_scale \(=2\)
p1_1_fanlat = 1.0
p1_1__fandwn = 1.0
p1_2_pixd = 4.0
p1_2_pix = 782
p1_2_scale = 2
p1_2_fanlat = 1.2
p1_2_fandwn = 1.0
p1_1_scale = 2
```


## D. 2 Stimuli details

A single emergic value (for each of the LMS cone sensitivities) is injected at tick $=1$ into the central RF in the $3^{\text {rd }}$ level. The connectivity of this RF is such that it will distribute this value downwards and laterally. The initializer or constructor for the emergic value has the following
signature
ValueXY ((x,y,v,w) ...)
where


Illustration 44: Imagined rectangles.
Three Emergic Values delivered once to the three RGB (LMS) sensory pathways of the central RF at Level 3. Intersecting colours shown on GUI with no perceptual support within ECM. r=radius of central RF; coordinates represent statistics within Emergic Values (Top Left and Bottom Right corners).
$x: \quad$ the x -coordinate of this sample value
$y: \quad$ the $y$-coordinate of this sample value
$\mathrm{v}: \quad$ the LMS colour value of this sample from 0 to 255
$\mathrm{w}: \quad$ the weight assigned to this sample value
...: repeatable, in which case this emergic value represents the
descriptive statistics for all the samples weighted accordingly

If $r$ is the radius of the central RF, then these are the three injected values


This spatial extent of this single set of LMS values is shown in Illustration 44.

## D. 3 Result details

In this section we tabulate a visual frame-by-frame account of results from all experiments. Such a frame-by-frame account allows for the extraction of precise timing information useful for quantitative analysis. It takes 36 pages. All these results are reduced to a single web page of animated images, available at
http://emergic.upwize.com/?page id=263
The animated account (Leibovitz, 2012a) is preferred as an overview showing behavioural dynamics of filling-out of imagination, memory, jitter, etc. and makes image stability more salient. It also includes the results in greatest detail - they have been scaled down for print in this supplement, and even smaller in the chapter's results and discussion sections.

Each table of results has the following columns. Time numerically represents the time tick since the test has started, nominally $10 \mathrm{~ms} /$ tick. All visual results in that table row are after the tick and computation have finished. Stimuli visually represents the stimuli presented to the virtual computer screen, often with retinal overlays. The Photoreceptor Mosaic visually represents what the retina senses by looking at the stimuli. Receptive Fields at Level 1, Level 2 and Level 3, visually represent the three level hierarchy of receptive fields showing their the functional size and placement, not physical size nor placement

## D.3.1 Test 1 results: Imagine quickly











## D.3.2 Test 2 results: Imagine slowly










D.3.3 Test 3 results: Imagine slowly with eye movement









D.3.4 Test 4 results: Imagine distorted










## References

Francis, G., \& Grossberg, S. (1996). Cortical dynamics of boundary segmentation and reset: persistence, afterimages, and residual traces. Perception, 25(5), 543-67. doi:10.1068/p250543

Leibovitz, D. P. (2012a). A Unified Cognitive Model of Visual Filling-In Based on an Emergic Network Architecture - Animated Test Results. Emergic Approach. Retrieved from http://emergic.upwize.com/?page_id=26

Leibovitz, D. P. (2012b). Modelling visual processing via emergence. Talk presented to the 22nd Annual Meeting of the Canadian Society for Brain, Behaviour and Cognitive Science (CSBBCS 2012). Kingston, Ontario. Retrieved from http://72.15.54.247/ocs/index.php/meeting/2012/paper/view/376

Leibovitz, D. P., \& West, R. (2012). Cognitive Re-Use via Emergic Networks (Poster). 11th International Conference on Cognitive Modeling (ICCM 2012) (Vol. In Press). Berlin, Germany. Retrieved from http://www.icem2012.com/proceedings/papers/0013/index.html

Picard, R. W. (1995). Light-years from Lena: video and image libraries of the future. Proceedings., International Conference on Image Processing (Vol. 1, pp. 310-313). IEEE Comput. Soc. Press. doi:10.1109/ICIP.1995.529708

Spillmann, L., Otte, T., Hamburger, K., \& Magnussen, S. (2006). Perceptual filling-in from the edge of the blind spot. Vision research, 46(25), 4252-7. doi:10.1016/j.visres.2006.08.033

Wald, G. (1967). Blue-Blindness in the Normal Fovea. Journal of the Optical Society of America, 57(11), 1289-1301. doi:10.1364/JOSA.57.001289

